Profinite $G$-spectra

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

For a Profinite Group G

Let G be a non-finite profinite group and let G− Setsdf be the canonical site of finite discrete G-sets. Then the category R G, defined by Devinatz and Hopkins, is the category obtained by considering G − Setsdf together with the profinite G-space G itself, with morphisms being continuous G-equivariant maps. We show that R G is a site when equipped with the pretopology of epimorphic covers. Als...

متن کامل

The Site R G for a Profinite Group G

Let G be a non-finite profinite group and let G− Setsdf be the canonical site of finite discrete G-sets. Then the category R G, defined by Devinatz and Hopkins, is the category obtained by considering G− Setsdf together with the profinite G-space G itself, with morphisms being continuous G-equivariant maps. We show that R G is a site when equipped with the pretopology of epimorphic covers. Also...

متن کامل

Epimorphic Covers Make R + G a Site , for Profinite G

Let G be a non-finite profinite group and let G−Setsdf be the canonical site of finite discrete G-sets. Then the category R G, defined by Devinatz and Hopkins, is the category obtained by considering G−Setsdf together with the profinite G-space G itself, with morphisms being continuous G-equivariant maps. We show that R G is a site when equipped with the pretopology of epimorphic covers. We poi...

متن کامل

Classifying Rational G-Spectra for Finite G

We give a new proof that for a finite group G , the category of rational Gequivariant spectra is Quillen equivalent to the product of the model categories of chain complexes of modules over the rational group ring of the Weyl group of H in G , as H runs over the conjugacy classes of subgroups of G . Furthermore the Quillen equivalences of our proof are all symmetric monoidal. Thus we can unders...

متن کامل

Profinite Monads, Profinite Equations, and Reiterman's Theorem

Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman’s theorem states that they precisely specify pseudovarieties, i.e. classes of finite algebras closed under finite products, subalgebras and quotients. In this paper Reiterman’s theorem is generalised to finite Eilenberg-Moore algebras for a monad T on a variety D of (ordered) algebras: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Homology, Homotopy and Applications

سال: 2013

ISSN: 1532-0073,1532-0081

DOI: 10.4310/hha.2013.v15.n1.a9